
Monetra® Payment Software

PaymentFrame Guide

Revision: 2.1.0
Publication date June 18, 2023

Copyright © 2023 Monetra Technologies, LLC

PaymentFrame Guide
Monetra Technologies, LLC

Revision: 2.1.0

Publication date June 18, 2023
Copyright © 2023 Monetra Technologies, LLC

Legal Notice

The information contained herein is provided As Is without warranty of any kind, express or implied, including but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. There is no warranty that the information or the use thereof does not infringe a
patent, trademark, copyright, or trade secret.

Monetra Technologies, LLC. SHALL NOT BE LIABLE FOR ANY DIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, WHETHER RESULTING FROM BREACH OF
CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, OR OTHERWISE, EVEN IF MONETRA TECHNOLOGIES HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. MONETRA TECHNOLOGIES RESERVES THE RIGHT TO MAKE CHANGES
TO THE INFORMATION CONTAINED HEREIN AT ANYTIME WITHOUT NOTICE. NO PART OF THIS DOCUMENT MAY BE
REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, FOR ANY PURPOSE,
WITHOUT THE EXPRESS WRITTEN PERMISSION OF Monetra Technologies, LLC.

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide iii

Table of Contents
1. Revision History .. 1
2. Monetra PaymentFrame .. 2

2.1. Introduction ... 2
2.2. How It Works ... 2
2.3. HMAC Parameters ... 3
2.4. 3D Secure ... 6
2.5. Styling the Payment Form .. 7
2.6. The PaymentFrame Javascript Library .. 9

2.6.1. setPaymentFormLoadedCallback(Function callback) 10
2.6.2. setFormSubmissionInvalidCallback(Function callback) 10
2.6.3. setPaymentSubmittedCallback(Function callback) 10
2.6.4. request() .. 10
2.6.5. submitPaymentData() ... 11
2.6.6. enableSubmitButton() ... 11
2.6.7. 3DSecure Methods .. 11

2.7. Code Example (PHP) ... 12

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide | CONFIDENTIAL 1

1 Revision History

Version Date Changes

v1.0 2017-08-30 • Initial document.

v1.1 2017-10-31 • Documented the ability to split cardholder name field
into first and last.

v1.2 2018-02-12 • This update applies to the "HMAC Parameters"
section. It enhances the description for the 'hmac-css-
url' parameter and adds the three new ones below:
* hmac-include-cardholdername
* hmac-include-street
* hmac-include-zip

v1.3 2018-07-18 • This update applies to the "HMAC Parameters"
section. It describes how to use the new 'auto-load'
feature.

v1.4 2018-10-04 • This update applies to the "HMAC Parameters"
section. It describes how to use the new
'autocomplete' feature.

v1.5 2019-10-11 • This update describes how to let Monetra/TranSafe
host the javascript files.

v1.6 2019-12-09 • Support for suppressing the submit button to allow a
submit button external to the iframe to submit.

v1.6.1 2020-04-02 • Explicitly note that only HTTPS is supported.

v1.7.0 2021-08-02 • Add ACH support.

v2.0.0 2022-04-27 • Authentication now uses API Keys

v2.1.0 2022-06-18 • Expand Javascript documentation
• Support for 3DS 2.0

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 2

2 Monetra PaymentFrame

2.1. Introduction ... 2
2.2. How It Works ... 2
2.3. HMAC Parameters ... 3
2.4. 3D Secure ... 6
2.5. Styling the Payment Form .. 7
2.6. The PaymentFrame Javascript Library .. 9

2.6.1. setPaymentFormLoadedCallback(Function callback) 10
2.6.2. setFormSubmissionInvalidCallback(Function callback) 10
2.6.3. setPaymentSubmittedCallback(Function callback) 10
2.6.4. request() .. 10
2.6.5. submitPaymentData() ... 11
2.6.6. enableSubmitButton() ... 11
2.6.7. 3DSecure Methods .. 11

2.7. Code Example (PHP) ... 12

2.1 Introduction

PaymentFrame is a Monetra feature that allows you to embed a secure iframe containing
a payment form on an HTTPS-enabled web page. This prevents credit card data from ever
touching your systems, while allowing your customers to complete seamless ecommerce
transactions on your site.

Note: The PaymentFrame can not be embedded into a non-secured HTTP site, even for testing
and development purposes, due to content security policies and mixed active content, the
browser will silently fail to load the page.

PCI Notice: This approach to Ecommerce integration follows the PCI Council's
best practices as outlined in https://www.pcisecuritystandards.org/pdfs/
best_practices_securing_ecommerce.pdf, and qualifies for SAQ-A.

2.2 How It Works

Note: In order to use the PaymentFrame, you will need to create a non-expiring merchant
profile API Key on the Monetra (or TranSafe) instance you are connecting to. This API Key
needs to at a minimum contain the action_admin=TICKETREQUEST, however if using the
same API Key for the follow-up actions, it must contain any necessary permissions for the
follow-up actions.

Examples for PaymentFrame implementation and styling are available https://
www.monetra.com/developers with a live demo at https://iframe.test.transafe.com.

1. Prepare your credentials: Before rendering your payment page (the page that will host
the iframe), you will need to generate a 256-bit keyed-hash message authentication code
(HMAC-SHA256) See Section 2.3: HMAC Parameters.

https://www.pcisecuritystandards.org/pdfs/best_practices_securing_ecommerce.pdf
https://www.pcisecuritystandards.org/pdfs/best_practices_securing_ecommerce.pdf
https://www.monetra.com/developers
https://www.monetra.com/developers
https://iframe.test.transafe.com

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 3

2. Add iframe element and components: Your html payment page must include an
empty iframe element (with no src attribute specified) with a unique id which will be
referenced by the JavaScript where you would like the payment form to appear. The
HMAC message components (along with the HMAC itself from step 1) must be included
as data- attributes on the iframe element. Note: The order in which the data attributes
are concatenated for the HMAC message must match the order of the parameters in the
table in Section 2.3: HMAC Parameters. The ordering is crucial for Monetra/TranSafe to
be able to properly verify the HMAC.

3. Load script: Your payment page will need to load https://{{monetra_url}}/
PaymentFrame/PaymentFrame.js, which provides the client-side logic for displaying
the iframe. For example, if you are using test.transafe.com as your payment server, the
URL would be https://test.transafe.com/PaymentFrame/PaymentFrame.js.

4. Load Payment Form: From here you'll just need to write a few lines of your own
Javascript to instantiate a PaymentFrame object and request the iframe. You will
need to define a callback function to be executed after the user's payment information
has been submitted. The full sequence would be to instantiate PaymentFrame
with the iFrame id and URL for the Monetra Server, define callback using the
.setPaymentSubmittedCallback() method, and call the .request() method to
load the iFrame. You can find an example of this sequence in the code example below.

5. Submit Cardholder Data: Once the iframe has loaded, it will render a payment form into
which the user can enter their payment information. When the user submits the form,
their information will be sent directly to the Monetra/TranSafe server, which will return a
CardShield ticket.

6. Process response: At this point, the callback function that you defined in your Javascript
will be executed, receiving a JSON object representing the Monetra/TranSafe server's
response (including the CardShield ticket) as a parameter.

7. Process the ticket: Once you have a valid ticket then you can communicate directly with
the Monetra/TranSafe system to run a standard transaction such as as SALE or a PRE-
AUTH as defined in the Monetra Application Interface Guide.

2.3 HMAC Parameters

Note: Please ensure these iframe attributes are prefixed with data- when using our standard
PaymentFrame javascript to display the iFrame as the javascript library uses this prefix to
determine the attributes used by the PaymentFrame and sent in the request to the Payment
Server.

Legend:
Req = Required or not [Y=Yes C=Conditional O=Optional]

Key Req Description

hmac-hmacsha256 Y Generated HMAC-SHA256 using the API Key Secret
as the key. The message must be a concatenation (with
no delimiters) of all of the other hmac- values you are

https://test.transafe.com/PaymentFrame/PaymentFrame.js

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 4

Key Req Description
providing, in the same order in which they appear in this
table (with the exception of this attribute)

hmac-timestamp Y Standard Unix timestamp. Must be within 15 minutes of
server's time.

hmac-domain Y The domain of the page embedding the iframe. This must
match exactly what would show in the browser URL bar,
including 'https://' (and port, if it is explicitly set). Please
note that using 'http://' will NOT work due to Content
Security Policies and Mixed Active Content.

hmac-sequence Y Merchant-specified sequence number. May be
alphanumeric.

hmac-auth_apikey_id Y The API Key ID returned by the Monetra server when
creating the merchant profile API Key.

hmac-css-url O URL of CSS file the iframe should load. It must be
served from the same domain as `hmac-domain`. If no
CSS URL is provided, the payment form will be rendered
with default styling (see "Styling the Payment Form" for
more information).

hmac-include-

cardholdername

O Indicates whether the cardholder name field should be
present on the payment form. Value can be "yes" or "no".
Defaults to "yes" if not provided. Only provide "no" here
if cardholder name is collected elsewhere during your
checkout process, and sent along with the ticket in the
Monetra sale request.

hmac-include-street O Indicates whether the street address field should be
present on the payment form. Value can be "yes" or "no".
Defaults to "yes" if not provided. Only provide "no"
here if street address is collected elsewhere during your
checkout process, and sent along with the ticket in the
Monetra sale request.

hmac-include-zip O Indicates whether the zip code field should be present on
the payment form. Value can be "yes" or "no". Defaults
to "yes" if not provided. Only provide "no" here if zip
code is collected elsewhere during your checkout process,
and sent along with the ticket in the Monetra sale request.

hmac-expdate-format O Format of expiration date the iframe should use. Choices:
* single-text: Free-form text entry. Default if not
specified.
* separate-selects: Two drop downs for month and year.
* coupled-selects: Two drop downs for month and year in
a container.

hmac-cardholdername-

format

O Single, or split cardholder name. Choices:
* separate-firstlast
* combined-firstlast

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 5

Key Req Description
separate-firstlast will split the card holder name
field into first and last name fields. This field must be
part of the hmac if present. It comes after 'expdate-format'
in the hmac data.

hmac-auto-reload O Indicates whether checkout page containing payment
form should auto-reload every 15 minutes in order to
avoid the HMAC becoming invalid due to the time it
was generated. Value can be 'yes' or 'no'. Defaults to 'no'
if not provided. If 'yes', users will see a message on the
checkout form (starting approximately 5 minutes before
the reload) indicating that the page will be reloaded soon
for security purposes. The message will include a timer
that counts down the time remaining until the reload
occurs.

hmac-autocomplete O Indicates whether browser autocomplete should be
enabled on the payment form. Value can be 'yes' or 'no'.
Defaults to 'yes' if not provided. If 'yes', payment form
fields will allow autocomplete (as long as the user's
browser settings are configured to allow it, which is
generally the default). If 'no', autocomplete will be
disabled on the payment form fields.

hmac-include-submit-

button

O Indicates whether the payment form should include a
submit button within the iframe. Defaults to 'yes' if not
provided. If you would like to use a submit button on
your own page outside of the iframe, set this value to
'no'. You would then use Javascript to send a message to
the iframe to trigger a form submit. See Section 2.6: The
PaymentFrame Javascript Library.

hmac-ach-enabled O Whether to display an ACH payment form in the iframe.
Value can be 'yes' or 'no'. Defaults to 'no' if not provided
(meaning a credit card payment form will be displayed).

hmac-ach-accounttype O Which ACH account type options should be allowed,
and the order in which they will appear. Should be
provided as a comma-separated list of values. Options
are "business", "personal", "checking", and "savings".
Options will be displayed to user in two separate `select`
elements, one for selecting "business" or "personal"
and another for selecting "checking" or "savings". The
order of these options (and therefore which options
are the default choices) will match the order in which
they are provided in this list. If ACH is enabled and this
value is not provided, the allowed options will default to
"personal"/"business" and "checking/savings". If ACH
is not enabled, this value has no effect and should not be
provided.

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 6

Note: Response Parameters are the same as returned by the Monetra POST Protocol ticket
request. The hmac- timestamp and hmac-sequence will be used as part of the POST response
to allow the hmac-hmacsha256 response from the ticket request to be validated.

2.4 3D Secure

If you account has 3DS enabled, and some or all of the 3DS field values are already known
prior to rendering the payment form, you specify these values by setting data- attributes
on the <iframe> that will contain the payment form. Once the payment form is requested,
these fields will be passed along with the request and included in the payment form as hidden
<input> tags.

Note: 3D Secure data fields are not part of the HMAC process

For example, if the customer's shipping address is collected in an earlier checkout step, it can
be passed into the iframe like so (note the data-3ds attributes following the required data-
hmac attributes):

 1 <iframe id="my-iframe-id"
 2 data-hmac-hmacsha256="2f46a6407581b4153b97f589fbb321cc13c2fc84c122226991ea95e2aac08c3e"
 3 data-hmac-domain="https://merchantsite.com"
 4 data-hmac-timestamp="1685470601"
 5 data-hmac-sequence="64763d89e3aa2"
 6 data-hmac-auth_apikey_id="P0052319E456B379E"
 7 data-3ds-ship_addr_line_1="123 Main St"
 8 data-3ds-ship_addr_line_2="Apt 1B"
 9 data-3ds-ship_addr_city="Miami"
 10 data-3ds-ship_addr_state="FL"
 11 data-3ds-ship_addr_post_code="33132"
 12 data-3ds-ship_addr_country="USA">
 13 </iframe>

Note: If 3DSecure fields are collected on the same page, however, you can submit these into
the iframe using Section 2.6.7.1: add3dsData(Object data)

The fields below are the 3DSecure-specific fields. When passed into the iframe as attributes,
prefix with data-3ds-:

• cardholdername: Cardholder name (if not included in iframe payment form)
• bill_addr_city: Billing address city
• bill_addr_country: ISO 3166-1 numeric three-digit country code of the billing address
• bill_addr_line_1: Line 1 of billing street address (if not included in iframe payment

form)
• bill_addr_line_2: Line 2 of billing street address (if not included in iframe payment

form)
• bill_addr_line_3: Line 3 of billing street address (if not included in iframe payment

form)
• bill_addr_post_code: Billing address zip/postal code (if not included in iframe

payment form)

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 7

• bill_addr_state: Billing address state
• email: Email address
• home_phone_countrycode: Home phone country code
• home_phone_number: Home phone number
• mobile_phone_countrycode: Mobile phone country code
• mobile_phone_number: Mobile phone number
• ship_addr_city: Shipping address city
• ship_addr_country: ISO 3166-1 numeric three-digit country code of the shipping

address
• ship_addr_line_1: Line 1 of shipping street address
• ship_addr_line_2: Line 2 of shipping street address
• ship_addr_line_3: Line 3 of shipping street address
• ship_addr_post_code: Shipping address zip/postal code
• ship_addr_state: Shipping address state
• work_phone_countrycode: Work phone country code
• work_phone_number: Work phone number
• purchase_amount: Total amount of the purchase
• purchase_currency: 3-digit ISO 4217 currency code in which purchase amount is

expressed

2.5 Styling the Payment Form

The iframe content can be styled using custom CSS. You can use the classes and IDs
documented below in your CSS to style the payment form and the elements it contains.

You can also provide custom text for the form's labels by specifying appropriate CSS rules.
Each label contains an empty span element, so that you can use the ::before selector in
conjunction with the content property to insert your desired text into the label. For example,
in order to provide custom text for the ZIP code label, you would use a CSS rule similar to the
following:

#payment-zip-label span::before {
 content: "Custom text here";
}

Note: If you do not provide custom text for any label, it will default to the value referenced in
the "IDs" table below.

CLASSES

Class Description

payment-form-label Applied to all label elements in the payment form. Each of
these elements contains an input or select element into which
payment data will be entered.

payment-expdate-label If hmac-expdate-format is set to separate-selects or coupled-
selects, this will be applied to the two label elements that
contain the select drop-downs for expiration date month and
year.

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 8

CLASSES

Class Description

payment-

cardholdername-label

If hmac-cardholdername-format is set to separate-firstlast, this
will be applied to the two label elements that contain the first
and last name text entry fields.

payment-ach-

accounttype-container

div element containing a label and select for selecting
ACH account type

ID's

ID Description

monetra-payment-form The payment form element.

payment-account-label The label containing the account (credit card number) input
element. Label text defaults to 'Card Number'.

payment-expdate-

container

If hmac-expdate-format is set to coupled-selects, this is the div
that contains the two select elements.

payment-expmonth-label If hmac-expdate-format is set to separate-selects or coupled-
selects, this is the label that contains the expiration month
select element. Label text defaults to 'Expiration Month'.

payment-expyear-label If hmac-expdate-format is set to separate-selects or coupled-
selects, this is the label that contains the expiration year select
element. Label text defaults to 'Expiration Year'.

payment-expdate-label If hmac-expdate-format is set to single-text, this is the label
that contains the 'expdate' (expiration date) input element.
Label text defaults to 'Expiration Date'.

payment-

cardholdername-label

The label containing the 'cardholdername' input element.
Label text defaults to 'Cardholder Name'.

payment-

cardholdernamefirst-

label

If hmac-cardholdername-format is set to separate-firstlast,
this is the label that contains the first name field. Label text
defaults to Cardholder First Name.

payment-

cardholdernamelast-

label

If hmac-cardholdername-format is set to separate-firstlast,
this is the label that contains the last name field. Label text
defaults to Cardholder Last Name.

payment-street-label The label containing the 'street' (street address) input element.
Label text defaults to 'Street Address'.

payment-zip-label The label containing the 'zip' (ZIP code) input element. Label
text defaults to 'ZIP Code'.

payment-cv-label The label containing the 'cv' (card verification value) input
element. Label text defaults to 'CV'.

payment-submit-button The button element used to submit the form.

payment-ach-account-

label

label element containing ACH account number input

payment-ach-account ACH account number input

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 9

ID's

ID Description

payment-ach-account-

confirm-label

label element containing ACH account number confirmation
input

payment-ach-account-

confirm

ACH account number confirmation input

payment-ach-routing-

label

label element containing ACH routing number input

payment-ach-routing ACH routing number input

payment-ach-

cardholdername-label

label element containing ACH account holder name input

payment-ach-

cardholdername

ACH account holder name input

payment-ach-

accounttype-owner-

label

label element containing select element for selecting
Business or Personal ACH account type

payment-ach-

accounttype-owner-

select

select element for selecting Business or Personal ACH
account type

payment-ach-

accounttype-purpose-

label

label element containing select element for selecting
Checking or Savings ACH account type

payment-ach-

accounttype-purpose-

select

select element for selecting Checking or Savings ACH
account type

2.6 The PaymentFrame Javascript Library

The PaymentFrame Javascript library provides a PaymentFrame object that can be used to set
up and configure your PaymentFrame instance.

The object can be instantiated as follows:

 1 paymentFrame = new PaymentFrame(
 2 "my-iframe-id",
 3 "https://test.transafe.com"
 4);

The first argument is the ID of the <iframe> element on your checkout page that will contain
the PaymentFrame payment form.

The second argument is the domain of the payment server you are using to generate the
PaymentFrame.

In the above example, the <iframe> element has an ID of "my-iframe-id", and the
payment server is https://test.transafe.com.

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 10

Once you have instantiated the PaymentFrame object, you can utilize the following methods to
set callback functions, request the payment form from the payment server, and trigger events
within the iframe when necessary.

2.6.1 setPaymentFormLoadedCallback(Function callback)

Set a function that will be triggered once the payment form has loaded within the iframe.
Useful if any action should be taken on the host checkout page after the iframe has finished
loading.

 1 paymentFrame.setPaymentFormLoadedCallback(function() {
 2 console.log("Payment form has loaded");
 3 });

2.6.2 setFormSubmissionInvalidCallback(Function callback)

Set a function that will be triggered if the user submits the payment form, and the form's data is
determined to be invalid. This could be due to required fields that are missing, or fields that are
formatted incorrectly. The iframe will highlight any erroneous fields within the payment form,
but this function allows the host checkout page to take additional action as needed.

 1 paymentFrame.setFormSubmissionInvalidCallback(function() {
 2 console.log("Form submission was invalid");
 3 });

2.6.3 setPaymentSubmittedCallback(Function callback)

Set a function that has been triggered after the payment form has been submitted and a
response has been received from the payment server. The callback will receive an object
containing the response data returned by the payment server. This response will indicate
whether a ticket was successfully generated, and if so, the response will also contain the ticket.

 1 paymentFrame.setPaymentSubmittedCallback(function(response) {
 2 if (response.code === "AUTH") {
 3 console.log("Ticket received:", response.ticket);
 4 } else {
 5 console.log("Error:", response.verbiage);
 6 }
 7 });

2.6.4 request()

This method is used to request the iframe payment form from the payment server. Once you
have instantiated the PaymentFrame object and set any desired callback functions, you must
call this method to render the payment form.

 1 paymentFrame.request();

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 11

2.6.5 submitPaymentData()

Depending on the layout of your payment page, you might wish to use your own submit button
for the payment form rather than use the one shown in the iframe by default. If you have
configured the iframe to hide its default submit button, use this method to trigger a submit of
the iframe payment form.

 1 var submitButton = document.getElementId("my-submit-button");
 2 submitButton.addEventListener("click", function() {
 3 paymentFrame.submitPaymentData();
 4 });

2.6.6 enableSubmitButton()

By default, once the iframe-generated payment form is submitted, its submit button is disabled.
This is to prevent users from clicking the submit button multiple times and potentially
generating multiple payment requests. Some integrations may require the submit button to
be re-enabled in certain circumstances, such as a user's card declining, in which case the user
would need to enter a different card and try again.

Use this method to re-enable the iframe's submit button after submission.

 1 paymentFrame.enableSubmitButton();

2.6.7 3DSecure Methods

If you have 3DSecure (3DS) enabled on your account, there are additional methods you can
use that are specific to 3DS-enabled integrations.

2.6.7.1 add3dsData(Object data)

This method can be used to pass 3DS field data to the iframe. From there it will be added
to the payment form and used for 3DS authorization. The method accepts a plain object
consisting of 3DS field names and values.

 1 var customerEmailField = document.getElementById("customer-email-field");
 2 customerEmailField.addEventListener("change", function() {
 3 paymentFrame.add3dsData({ email: customerEmailField.value });
 4 });

2.6.7.2 set3dsDataResultsCallback(Function callback)

When the iframe receives 3DS data from the host page, it will send a response indicating
whether it was able to successfully add the 3DS data to the payment form. This method sets
a callback function that will be triggered whenever one of these responses is received. The
callback will receive results data as an object with the following keys:

• valid - Boolean, whether or not the message was structured correctly.
• fieldResults - Array of objects with results for each field included in the message.

Object keys:

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 12

• fieldName - The provided field name
• added - Boolean, whether the field was added to the form
• message - "Field added" if the field was added; otherwise, the reason why it wasn't

added

 1 paymentFrame.set3dsDataResultsCallback(function(response) {
 2 if (response.valid) {
 3 for (let result of response.fieldResults) {
 4 if (result.added) {
 5 console.log("Field", result.fieldName, "was added.");
 6 }
 7 }
 8 } else {
 9 console.log("3DS data was structured incorrectly");
 10 }
 11 });

2.7 Code Example (PHP)

 1 <?php
 2
 3 /* Values that will be needed for generating the HMAC.
 4 * DO NOT USE THE BELOW, JUST EXAMPLES. NOT REAL. Replace with proper values. */
 5 $host_domain = "https://your.website.com";
 6 $auth_apikey_id = "P004E346922321910";
 7 $auth_apikey_secret = "WrRMpJBU6hGZss45Fv7GJwIFhFo7gApD2L1AblqF63A=";
 8
 9 $hmac_fields = [];
 10
 11 /* "timestamp", "domain", "sequence", and "auth_apikey_id" are the required HMAC fields. */
 12
 13 /* Current Unix timestamp */
 14 $hmac_fields["timestamp"] = time();
 15
 16 /* Domain of the website that will host the iframe */
 17 $hmac_fields["domain"] = $host_domain;
 18
 19 /* Merchant-specified alphanumeric value for tracking/verification purposes.
 20 * In production this should be dynamically generated.
 21 */
 22 $hmac_fields["sequence"] = "abc123";
 23
 24 /* Merchant Profile API Key ID that will be used to request the iframe
 25 * and generate the ticket
 26 */
 27 $hmac_fields["auth_apikey_id"] = $auth_apikey_id;
 28
 29 /* Optional field. This is the URL of the CSS file that will be used to style the
 30 iframe's contents. */
 31 $hmac_fields["css-url"] = $host_domain . "/css/iframe.css";
 32
 33 /* Optional field. This will direct Monetra to generate the form with separate
 34 * select elements for the expiration date month and year, rather using than
 35 * a single text element for the expiration date.
 36 */
 37 $hmac_fields["expdate-format"] = "separate-selects";

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 13

 38
 39 /* Concatenate all of the defined HMAC fields into a string with no delimiters */
 40 $data_to_hash = implode("", $hmac_fields);
 41
 42 /* Generate the HMAC, using the Monetra Merchant User's password as the key */
 43 $hmac = hash_hmac('sha256', $data_to_hash, $auth_apikey_secret);
 44
 45 /* Assemble a string containing the "data-" attributes for the iframe element.
 46 * This will consist of the HMAC itself and all of the fields included in the HMAC.
 47 */
 48 $iframe_attributes = [
 49 'data-hmac-hmacsha256="' . $hmac . '"'
 50];
 51 foreach ($hmac_fields as $key => $value) {
 52 $iframe_attributes[] = 'data-hmac-' . $key . '="' . $value . '"';
 53 }
 54 $iframe_attribute_string = implode(" ", $iframe_attributes);
 55
 56 /* Render the payment page HTML. */
 57 ?>
 58 <!DOCTYPE html>
 59 <html>
 60 <head>
 61 <meta name="viewport" content="width=device-width, initial-scale=1">
 62 <title>Example Shopping Site</title>
 63 <link rel="stylesheet" type="text/css" href="./css/host.css" />
 64 </head>
 65 <body>
 66 <main>
 67 <h1>Checkout Page</h1>
 68 <p>
 69 Please fill out your payment information below.
 70 </p>
 71 <iframe id="myPaymentFrameId" <?php echo $iframe_attribute_string; ?>></iframe>
 72 </main>
 73 <!-- Load the Javascript file containing the PaymentFrame helper object -->
 74 <script src="https://test.transafe.com/PaymentFrame/PaymentFrame.js"></script>
 75 <script>
 76
 77 /* Instantiate the PaymentFrame object. The constructor accepts two parameters:
 78 * (iframeElementId) The ID of the iframe element on your page that will
 79 * contain the PaymentFrame (iframeURL) The URL of the payment server you are
 80 * using to generate the PaymentFrame In this case, the iframe element has
 81 * an ID of "myPaymentFrameId", and our payment server is https://test.transafe.com.
 82 */
 83 var paymentFrame = new PaymentFrame(
 84 "myPaymentFrameId",
 85 "https://test.transafe.com"
 86);
 87
 88 /* You can use the "setPaymentSubmittedCallback" method of the PaymentFrame
 89 * object to set a callback function that will be executed once the payment
 90 * form has been submitted. This function will receive a "response" object
 91 * containing details about the payment form submission. This won't include
 92 * any sensitive data.
 93 */
 94 paymentFrame.setPaymentSubmittedCallback(function(response) {
 95 if (response.code === 'AUTH') {

Copyright © 2023 Monetra Technologies, LLC | PaymentFrame Guide 14

 96 /* If the response code is "AUTH" (meaning the ticket request was
 97 * successful), the response object will contain the CardShield ticket,
 98 * which can be used in place of card data for the payment
 99 * transaction. At this point, you would use the ticket to continue
 100 * your checkout/payment flow.
 101 */
 102 console.log("The CardShield ticket is " + response.ticket);
 103 } else {
 104 /* If the response code is "DENY", there was a problem generating the
 105 * ticket. In this case, the response object will contain a "verbiage"
 106 * property with a brief error message.
 107 */
 108 console.error(response.verbiage)
 109 }
 110 });
 111
 112 /* The "request" method requests a payment form to be loaded into your
 113 * iframe from the payment server. Calling this method is the last step to
 114 * rendering the PaymentFrame.
 115 */
 116 paymentFrame.request();
 117
 118 </script>
 119 </body>
 120 </html>
 121

	PaymentFrame Guide
	Table of Contents
	1 Revision History
	2 Monetra PaymentFrame
	2.1 Introduction
	2.2 How It Works
	2.3 HMAC Parameters
	2.4 3D Secure
	2.5 Styling the Payment Form
	2.6 The PaymentFrame Javascript Library
	2.6.1 setPaymentFormLoadedCallback(Function callback)
	2.6.2 setFormSubmissionInvalidCallback(Function callback)
	2.6.3 setPaymentSubmittedCallback(Function callback)
	2.6.4 request()
	2.6.5 submitPaymentData()
	2.6.6 enableSubmitButton()
	2.6.7 3DSecure Methods
	2.6.7.1 add3dsData(Object data)
	2.6.7.2 set3dsDataResultsCallback(Function callback)

	2.7 Code Example (PHP)

